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Abstract

The velocity boundary condition that must be imposed at an interface between a porous medium and a free fluid is investigated. A
heterogeneous transition zone characterized by rapidly varying properties is introduced between the two homogeneous porous and free
fluid regions. The problem is solved using the method of matched asymptotic expansions and boundary conditions between the two
homogeneous regions are obtained. The continuity of the velocity is recovered and a jump in the stress built using the viscosity (and
not the effective viscosity) appears. This result also provides an explicit dependence of the stress jump coefficient to the internal structure
of the transition zone and its sensitivity to this microstructure is recovered.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Transport phenomena at the interface between a porous
medium and an adjacent free fluid have been the object of
considerable interest because they occur in a wide range of
technological applications. In all problems, the knowledge
of the momentum transfer across the interface is decisive
for an accurate description of the other involved transfer
phenomena: heat, species, . . . The main modeling issues
remain in the definition of appropriate boundary condi-
tions at the fluid/porous interface, as well as in the choice
of the appropriate model in the porous region.

In the study of Beavers and Joseph [1], which is recalled
in Fig. 1, the momentum transport in the free fluid region is
described by the Stokes equations, while the Darcy’s law
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is used in the porous medium. Here, hui is the volumetric
average of the velocity, l is the fluid dynamic viscosity,
Kp is the permeability of the porous medium and hpif de-
notes the intrinsic average of the pressure. Since the Stokes
and Darcy equations are partial differential equations of a
different order, a simple semi-empirical slip boundary
condition is proposed at the interface, which takes into
account the Darcy velocity inside the porous layer (UD),
the permeability of the porous medium (Kp) and a slip
parameter a:

du
dy

����
y¼0

¼ affiffiffiffiffiffi
Kp

p ðuB � U DÞ ð2Þ

where uB = huijy=0 is the free fluid velocity at the interface
(slip velocity). a is a dimensionless constant which char-
acterizes the geometry of the transition region between
the free fluid region and the porous medium. This con-
stant needs to be adjusted to obtain good agreement with
the experimental data provided by Beavers and Joseph
[1].

Neale and Nader [11] proposed to use the Darcy–Brink-
man equations
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Nomenclature

Da Darcy number
dp pore size diameter
h height of the fluid channel
K permeability tensor
Kp permeability of the homogeneous porous med-

ium
p pressure
u velocity
UD Darcy velocity
uB slip velocity
U1 asymptotic value of the volumetric average

velocity in the porous medium as y!�1

Special symbols

hwi volumetric average (or phase average)
hwif intrinsic phase average

Greek symbols

a slip coefficient of Beavers and Joseph
b stress jump coefficient of Ochoa-Tapia et al.
bp stress jump coefficient of the present study
d thickness of the boundary region
� d/h, small parameter
/ porosity
/p porosity of the homogeneous porous medium
U fractional increase in mass flow rate
l viscosity of the fluid
leff effective viscosity of the porous medium
r 1=

ffiffiffiffiffiffi
Da
p

Superscripts

w+ non-dimensional variable
�w inner variable
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leff

d2hui
dy2

� l
Kp

hui ¼ dhpif
dx

ð3Þ

for the flow inside the porous medium in order to explain
the semi-empirical theory of Beavers and Joseph. Here, leff

denotes the effective viscosity of the fluid in the porous
medium. Since the Stokes and Brinkman equations are of
the same order, they assumed continuity of both velocity
and stress (built on the effective viscosity) at the interface.
In that case, they obtained a solution identical to the one
Fig. 1. Fluid flow parallel to a
of Beavers and Joseph in the free fluid region (y > 0) pro-
vided that a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
leff=l

p
. With this formulation, it is possi-

ble to obtain information about what is happening in the
boundary layer region beneath the surface of the permeable
channel wall and some authors use this formulation
[19,16,25]. The main limitation of this approach lies in
the fact that it is still not possible to predict accurately
the effective viscosity leff of a given porous medium. In
fact, even the validity of the Brinkman correction, in which
the effective viscosity appears, is challenged [23,12,24]. Fur-
n infinite porous medium.
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thermore, Sahraoui and Kaviany [21] have shown that with
this kind of formulation (i.e. Brinkman and Stokes), a
variable effective viscosity has to be used for an accurate
prediction of the local velocity near the interface inside
the porous medium.

An alternative approach has been proposed by Ochoa-
Tapia and Whitaker [13,14], who developed a jump condi-
tion to account for the momentum transfer that occurs at
the interface. Their work is based on the continuity of vol-
ume averaged quantities in the entire domain. They use
volume averaged transport equations in the whole domain,
including the heterogeneous transition region and propose
a methodology to derive the corresponding jump condi-
tions to be applied at the interface between the two homo-
geneous regions. They obtain the following jump
condition:

dhui
dy

����
y¼0þ
� 1

/p

dhui
dy

����
y¼0�
¼ � bffiffiffiffiffiffi

Kp

p huijy¼0 ð4Þ

where b is a dimensionless parameter of the order of one.
They obtain good agreement with the experimental data
of Beavers and Joseph [1] by adjusting this parameter. In
their analysis, b is a complex function of a closure problem
that they could not solve, even numerically. Thus, they pro-
pose to use a variable porosity model in a transition zone
between the two homogeneous regions, as a substitute for
the jump condition to try to make explicit the dependence
of b with the structure of this transition zone. However,
their approach was not successful.

Following the same idea, Goyeau et al. [7] recall that
‘‘an interface is an ideal representation of a region with
continuous spatial changes of the macroscopic properties

and that the knowledge of these evolving heterogeneities
is necessary for an accurate description of transport phe-
nomena near the interface’’. Thus, they introduce a hetero-
geneous continuously varying transition zone between the
two outer homogeneous regions. They are then able to
obtain an explicit function for the stress jump coefficient
b and they show that b is related to the continuous spatial
variations of the porous structure within the transition
zone. The main limitation of their approach lies in the fact
that b is also related to the variations of the velocity, which
is an unknown of the problem.

In order to study this problem, different levels of
description can be considered. At the microscopic level,
the flow is governed by the Stokes equations in the free
fluid channel and inside the pores of the permeable media.
At a second level of description, the fluid and solid phases
are replaced by an equivalent medium obtained by using
the volume averaging method. This is the basis of the
continuum approach for flows in porous media. At this
continuous level, the zone located in between the two
homogeneous regions (i.e. porous medium and free fluid),
is a continuous heterogeneous transition zone, where the
properties of the medium (e.g. porosity) encounter strong
but nevertheless continuous variations. Finally, a third
level of description characterized by two homogeneous
regions, separated by an interface of discontinuity can be
considered. The use of a single volume averaged transport
equation in the whole domain, as well as the representation
of this problem using a heterogeneous continuously vary-
ing transition zone of thickness d between two outer homo-
geneous regions (second level approach) are attractive.
Goyeau et al. [7] could not give an expression for b that
does not depend on the variations of the velocity because
they do not explicitly solve the problem inside the hetero-
geneous transition zone. The objective of our study is to
show that, given a transport equation in the whole domain
(second level of description), it is possible to solve the prob-
lem inside the heterogeneous transition zone using the
method of matched asymptotic expansions and thus to for-
mally derive the boundary conditions to be applied at the
interface separating the two homogeneous regions (third
level of description). An explicit function for the stress
jump coefficient which only depends on the characteristics
of the porous medium (porosity and permeability) in the
transition zone is thus obtained.

In the first part of this paper, the derivation of the mac-
roscopic continuity and momentum equations in the
framework of the volume averaging method are recalled,
and the hypotheses used in this study are presented. Then,
the problem is solved using the method of matched asymp-
totic expansions and boundary conditions at the interface
are derived. Finally, the result is compared to the experi-
mental data of Beavers and Joseph [1], and to the analytical
solution of Ochoa-Tapia and Whitaker [14].

2. Macroscopic governing equations

2.1. Volume averaging

The method of volume averaging is a technique used to
rigorously derive continuous macroscopic equations from
the description of the problem at a microscopic scale for
multiphase systems. This method allows to change the scale
of description of the problem. The main steps of the
method will be described, for completeness and to highlight
the hypotheses used in this study.

For the problem under consideration in the present
study, the flow is laminar. The Reynolds number inside
the pores is supposed to be small, so that inertia effects
can be neglected. The governing differential equations at
the microscopic scale in the entire fluid domain (free fluid
region and pores of the porous medium) are given by the
Stokes equations:

r � u ¼ 0 ð5Þ
� rp þ lr2u ¼ 0 ð6Þ
The boundary condition is:

u ¼ 0 at the fluid–solid interface ð7Þ
The macroscopic governing equations can be obtained by
volume averaging the corresponding microscopic Eqs. (5)
and (6) over a representative elementary volume (REV).
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In the study of multiphase transport phenomena, two types
of volume averages are commonly introduced [27]. The first
one is the phase average (or volumetric average) which is
defined by

hwi ¼ 1

V

Z
V f

wdV ð8Þ

for any physical variable w, where Vf represents the volume
of the fluid phase contained within the averaging volume V

(see Fig. 1). However, hwi is not equal to w when the latter
is a constant. Therefore a second average, the intrinsic

phase average, is defined by

hwif ¼
1

V f

Z
V f

wdV ð9Þ

which is more representative of the condition in the fluid
phase. These two averages are related through the porosity
/ by

hwi ¼ /hwif ; / ¼ V f

V
ð10Þ

To derive the macroscopic governing equations, rela-
tions between the volumetric averages of derivatives and
the derivatives of volumetric averages are needed. These
relations are presented in a number of works [22,26] and
are known as the theorems of local volumetric average.
For the case of a fixed solid, they can be written as:

hrwi ¼ rhwi þ 1

V

Z
Ai

wndS ð11Þ

hr � wi ¼ r � hwi þ 1

V

Z
Ai

w � ndS ð12Þ

ow
ot

� �
¼ o

ot
hwi ð13Þ

where Ai is the fluid–solid interfacial area and n is the unity
normal vector oriented outward from the fluid into the so-
lid phase (see Fig. 1). Note that these theorems are general
and that, in particular, no length scale constraint is associ-
ated to their validity.

2.2. Macroscopic continuity and momentum equations

Applying the phase average operator to the microscopic
Eqs. (5) and (6), using the fact that the velocity vanishes at
the fluid–solid interface and that the viscosity of the fluid is
constant, the following result is obtained:

r � hui ¼ 0 ð14Þ

� rhpi þ lr2hui ¼ � 1

V

Z
Ai

ðlru� pIÞ � ndS ð15Þ

In the analysis of flows in porous media, the phase average
velocity hui is preferred to the intrinsic phase average veloc-
ity huif because (i) it is representative of the mass flow rate
and (ii) it is solenoidal (Eq. (14)). However, the intrinsic

phase average of the pressure hpif is preferably used, since
it more closely corresponds to the measured value of the
pressure. When the size of the REV r0 is small compared
to the characteristic length scale of variation of the macro-
scopic quantities L, but still sufficiently large such that the
local average properties (porosity) are statistically mean-
ingful, Carbonell and Whitaker [3] showed that:

1

V

Z
Ai

hwif ndS ¼ hwif
1

V

Z
Ai

ndS ð16Þ

Another important lemma is obtained, substituting w = 1
in relation (11)

1

V

Z
Ai

ndS ¼ �r/ ð17Þ

Using Eqs. (10), (16) and (17) and Gray’s decomposition
[8]:

w ¼ hwif þ ~w ð18Þ
Eq. (15) can be rewritten in the form [27]:

�rhpif þ
l
/
r2hui � l

/
r/ � rhuif

¼ � 1

V f

Z
Ai

ðlr~u� ~pIÞ � ndS ð19Þ

The first viscous term that appears in Eq. (19) is the Brink-
man correction. One can note that the viscosity associated
with this term is the fluid viscosity l divided by the porosity
/. Thus, the effective viscosity is leff = l//. The second vis-
cous term is referred to as the second Brinkman correction

by Ochoa-Tapia and Whitaker [13]. The closure of Eq.
(19) is realized through the modeling of the term appearing
in its right hand side which involves microscopic quantities.

2.2.1. Homogeneous porous region

It has been shown [27,17,18] that Eq. (19) reduces to a
simple form for a viscous flow in a homogeneous porous
medium:

l
/
r2hui � lK�1hui ¼ rhpif ð20Þ

where K is the Darcy’s law permeability tensor. Note that,
since the porosity gradient is zero in the homogeneous por-
ous region, the second Brinkman correction is null in this
region.

2.2.2. Homogeneous fluid region
In the homogeneous fluid region, the right hand side of

Eq. (19) is of course zero since there is no solid, and the
second Brinkman correction is null since the porosity is
constant (equal to 1). Furthermore, for a viscous flow,
Ochoa-Tapia and Whitaker [13] have shown that the point
velocity is equal to the volume average velocity:

huijx ¼ ujx ð21Þ
when the size of the REV r0 is small compared to the char-
acteristic length scale of variation of the velocity. Thus, Eq.
(19) reduces to the Stokes equation. Noting that the perme-
ability is infinite in the homogeneous fluid region and that
/ = 1, Eq. (20) is also valid in this region.



M. Chandesris, D. Jamet / International Journal of Heat and Mass Transfer 49 (2006) 2137–2150 2141
2.2.3. Heterogeneous transition zone

Representing the boundary between the porous medium
and the free fluid region as a sharp interface is only an ide-
alization of a region where the properties of the medium
encounter strong but nevertheless continuous variations.
At the boundary between a porous medium and either a
homogeneous fluid or a homogeneous solid, the porosity
varies rapidly. Thus, the second Brinkman correction can
be important. However, in this transition zone, the length
scale constraint r0� L used to obtain the second Brinkman

correction (see Eq. (16)) is not necessarily valid, since the
macroscopic quantities encounter strong variations on a
short distance. As pointed out by Whitaker [27], there is
no simple solution to the closure problem in this thin
region of rapid variations.

Then, two different modeling approaches can be pro-
posed: (i) to derive and solve a closure problem for ~u and
~p in the heterogeneous transition region. This approach
has been used to derive jump conditions at the boundary
between a porous catalyst and a homogeneous fluid
[28,15]. However, to the authors knowledge, it has not
been yet extended to the study of momentum transfer
due to the complexity of the approach; (ii) to postulate
the form of the closed equation, and to study the conse-
quence of this choice. The second approach is followed in
this study.

In order to propose a form to close Eq. (19) in the het-
erogeneous region, we suppose that no other forces than
the ones acting in the homogeneous porous medium have
to be taken into account in the heterogeneous transition
zone. We assume that this heterogeneous transition zone
of thickness d is well represented by considering that the
macroscopic properties of the medium / and K are contin-
uously varying from their values in the homogeneous por-
ous region, to their values in the homogeneous fluid region,
and that the effects of the second Brinkman correction are
taken into account through these variations of / and K.
We have made this choice for different reasons. First, not
taking into account the second Brinkman correction slightly
simplifies the problem. Furthermore, when studying vari-
able porosity models for the heterogeneous transition zone,
Goyeau et al. [7] were able to recover the jump conditions
proposed by Ochoa-Tapia and Whitaker without the
second Brinkman correction, whereas Ochoa-Tapia and
Whitaker [14] could not while using the second Brinkman

correction. With this assumption, Eq. (20) is valid every-
where. We are aware that this is a modeling choice. How-
ever, having chosen this particular model, we propose a
rigorous method to determine the relevant form for the
boundary conditions that must be applied at the interface
separating the porous and free fluid media. Even though
this choice is questionable, we show that the derived
boundary conditions are consistent with observed data
and they allow to improve the results of precedent models.
Furthermore, the day the closure problem would be solved
in the highly heterogeneous region, this method, applied
here in a simple case, could be used.
To solve the system (14) and (20), one needs to specify
the exact variations of / and K within the transition zone
as well as the thickness of the transition zone d in order to
close the system. The objective of this study is to obtain a
sufficiently accurate approximate solution of this system
using the method of matched asymptotic expansions, with-
out specifying a priori the functional dependence of / and K

within the transition zone, in order to construct acceptable
jump conditions between the two homogeneous regions.

3. One-dimensional problem

For the steady-state one-dimensional flow process illus-
trated in Fig. 1, we assume that the variables are not x-
dependent except for the pressure. From the continuity
equation and the fact that the velocity vanishes at the upper
wall (at y = h), it comes that the y-component of the veloc-
ity is zero. Thus, the set of Eqs. (14) and (20) reduces to:

l
/

d2hui
dy2

� lK�1hui ¼ ohpif
ox

ð22Þ

hui ¼ 0; y ¼ h no slip condition ð23Þ
hui is bounded as y ! �1 ð24Þ

where u represents the x-component of the velocity vec-
tor and K the permeability of the porous medium in
the x-direction. Since the pressure gradient is zero in
the y-direction (projection of the momentum equation on
the y-axis), it follows that the pressure gradient dhpif/dx

is a constant. The porosity / and the permeability K are
only y dependent.

3.1. Non-dimensional form of the problem

To make the system of Eqs. (22)–(24) non-dimensional,
the following scales are considered:

• h, height of the fluid channel: macroscopic length asso-
ciated to the fluid region.

•
ffiffiffiffiffiffi
Kp

p
, Kp being the permeability of the homogeneous

porous medium: macroscopic length associated to the
homogeneous porous medium.

• U1, asymptotic value of the volumetric average velocity
in the porous medium as y!�1.

• d, thickness of the boundary region.

Let us denote the non-dimensional variables by a super-
script +. The following dimensionless variables are
introduced:

yþ ¼ y
h
; Uþ ¼ hui

U1
; Kþ ¼ K

Kp

;

Pþ ¼ hpif
h

U1l
; /þ ¼ / ð25Þ

The Darcy number Da = Kp/h2 is also introduced. The
dimensionless form of the boundary value problem (22)–
(24) is given by
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1

/þ
d2Uþ

dyþ2
� 1

Da
Uþ

Kþ
¼ dPþ

dxþ
ð26Þ

Uþ ¼ 0; yþ ¼ 1 no slip condition ð27Þ
Uþ ! 1 when yþ ! �1 ð28Þ
3.2. Method of matched asymptotic expansions

The method of matched asymptotic expansions is appli-
cable to the resolution of differential equations in which a
small parameter is present. This method is classical
[30,29,4] and commonly used to study diffuse interface
problems [5]. The main steps of the method, and in partic-
ular the origin of the matching conditions, are given only
for completeness concern. In the present study, the small
parameter is the ratio d/h and will be noted �. This method
consists in dividing the resolution domain in different sub-
regions: an outer region, where the variables of the system
are slowly varying, and an inner region, where these vari-
ables are rapidly varying. In our study, the heterogeneous
transition zone is the inner region where the variables such
as the porosity, the permeability and the velocity are
rapidly varying, while each homogeneous region (porous
medium and free fluid) is an outer region. Then a change
of variable is made in the inner region, since variations of
order one are expected to take place in this thin region
and a new space variable is introduced:

�yþ ¼ yþ

�
ð29Þ

Let f be any physical variable. Then, �f is introduced in the
inner region:

�f ð�yþÞ ¼ f
yþ

�

� �
ð30Þ

�f ð�yþÞ varies more slowly than f(y+) in the inner region.
Hereafter, the notation f will designate any variable in
the outer regions, while �f will designate this variable in
the inner region.

The differential equations are solved separately in
each region, using an asymptotic expansion in �. For
example, at first order, the solutions are sought for in the
form:

f ðyþ; �Þ ¼ f ð0ÞðyþÞ þ �f ð1ÞðyþÞ þ Oð�2Þ ð31Þ
�f ð�yþ; �Þ ¼ �f ð0Þð�yþÞ þ ��f ð1Þð�yþÞ þ Oð�2Þ ð32Þ

However, in order to solve completely the differential equa-
tions in each region, boundary conditions are needed. The
missing boundary conditions are obtained by matching the
solutions of the different regions using the following match-
ing principles [30]:

lim
yþ!0þ

f ðyþ; �Þ ¼ lim
�yþ!þ1

�f ð�yþ; �Þ¼^ f þi ð33Þ

lim
yþ!0�

f ðyþ; �Þ ¼ lim
�yþ!�1

�f ð�yþ; �Þ¼^ f �i ð34Þ
These relations mean that, for the study of the outer re-
gions, the interface is viewed as a surface of discontinuity
located in 0+ (respectively 0�), and for the study of the
inner region, the outer regions are supposed to be reached
asymptotically in +1 and �1. f þi (respectively f �i ) is the
value of f at the interface ‘‘side +’’ (respectively ‘‘side�’’),
and is the same in the inner and the outer studies. Relations
(33) and (34) are then made explicit. Using an asymptotic
expansion of f (0)(y+) as y+! 0+ (respectively y+! 0�),
Eq. (31) can be rewritten at first order:

f ðyþ; �Þ ¼ lim
yþ!0�

f ð0ÞðyþÞ

þ � �yþ lim
yþ!0�

df ð0Þ

dyþ
þ lim

yþ!0�
f ð1ÞðyþÞ

� �
þ Oð�2Þ

ð35Þ

Using Eqs. (32)–(35), the following matching conditions
are obtained at first order:

lim
�yþ!�1

�f ð0Þ ¼ lim
yþ!0�

f ð0Þ ð36Þ

lim
�yþ!�1

�f ð1Þ ¼ lim
yþ!0�

f ð1Þ þ �yþ lim
yþ!0�

df ð0Þ

dyþ
ð37Þ

Following this approach, matching conditions can be
derived at higher order and for the derivatives of f (e.g.
[30,6]). In this study, the following matching conditions
will also be used:

lim
�yþ!�1

d�f ð0Þ

d�yþ
¼ 0 ð38Þ

lim
�yþ!�1

d�f ð1Þ

d�yþ
¼ lim

yþ!0�

df ð0Þ

dyþ
ð39Þ

lim
�yþ!�1

d�f ð2Þ

d�yþ
¼ lim

yþ!0�

df ð1Þ

dyþ
þ �yþ lim

yþ!0�

d2f ð0Þ

dyþ2
ð40Þ

Using these relations to match the solutions in the different
regions, an approximate solution of the equations is ob-
tained in the whole domain. Further explanations about
this method can be found in [30,29,4,6].

3.2.1. Outer region

To make an asymptotic expansion in � of Eq. (26), we
need to specify the variations of the porosity and the per-
meability in the outer region. At this point, we just assume
that they are constant at least to second order:

/þ ¼
/p þ oð�2Þ; yþ < 0

1þ oð�2Þ; yþ > 0

�
ð41Þ

1

Kþ
¼

1þ oð�2Þ; yþ < 0

0þ oð�2Þ; yþ > 0

�
ð42Þ

Such variations can be obtained by considering, for exam-
ple, that the porosity and the inverse of the permeability
vary as hyperbolic tangent functions:



M. Chandesris, D. Jamet / International Journal of Heat and Mass Transfer 49 (2006) 2137–2150 2143
/þ ¼
1� /p

2
tanh

yþ

�

� �
þ

1þ /p

2
ð43Þ

1

Kþ
¼ � 1

2
tanh

yþ

�

� �
þ 1

2
ð44Þ

For y+ < 0, Eq. (26) reduces to:

1

/p

d2ðUþð0Þ þ �Uþð1Þ þoð�ÞÞ
dyþ2

�ðU
þð0Þ þ �Uþð1Þ þoð�ÞÞ

Da
¼ dPþ

dxþ

ð45Þ
The analytical solutions of these two problems (at order 0
and order 1) are easily determined:

Uþð0ÞðyþÞ ¼ 1þ Cð0Þ1 exp

ffiffiffiffiffiffi
/p

Da

r
yþ

 !
; yþ < 0 ð46Þ

Uþð1ÞðyþÞ ¼ Cð1Þ1 exp

ffiffiffiffiffiffi
/p

Da

r
yþ

 !
; yþ < 0 ð47Þ

and the following relation is also obtained:

�Da
dPþ

dxþ
¼ 1 ð48Þ

For 0 < y+ < 1, Eq. (26) reduces to:

d2ðUþð0Þ þ �Uþð1Þ þ oð�ÞÞ
dyþ2

¼ dPþ

dxþ
ð49Þ

The analytical solutions of these two problems are given by

Uþð0ÞðyþÞ ¼ � 1

2Da
ððyþÞ2 � 1Þ þ Cð0Þ2 ðyþ � 1Þ; 0 < yþ < 1

ð50Þ
Uþð1ÞðyþÞ ¼ Cð1Þ2 ðyþ � 1Þ; 0 < yþ < 1 ð51Þ

The four constants of integration Cð0Þ1 , Cð1Þ1 , Cð0Þ2 and Cð1Þ2 in
the expressions for the velocity will be determined later,
using the inner solutions and the matching conditions.

3.2.2. Inner region
In order to study the inner problem, the space variable

(29) is used. Using this variable, Eq. (26) can be written as:

1
�/þ

1

�2

d2Uþ

d�yþ2
� 1

Da
Uþ

Kþ
¼ dPþ

dxþ
ð52Þ

To solve this equation, we need to specify the functional
dependence of the porosity and the permeability in the
transition zone. At this point, we just assume that these
functions are varying as y/d. It only implies that they are
rapidly varying in the transition zone, as expected. Further-
more, since �yþ ¼ yþ=� ¼ y=d, it follows that �/þ and Kþ do
not depend on �. Thus, the asymptotic expansion in � of
Eq. (52) reads:

1
�/þ

1

�2

d2ðUþð0Þ þ �Uþð1Þ þ �2Uþð2Þ þ oð�2ÞÞ
d�yþ2

� 1

Da
ðUþð0Þ þ oð1ÞÞ

Kþ
¼ dPþ

dxþ
ð53Þ
and we have:

Order 0:
d2Uþð0Þ

d�yþ2
¼ 0 ð54Þ

Order 1:
d2Uþð1Þ

d�yþ2
¼ 0 ð55Þ

Order 2:
d2Uþð2Þ

d�yþ2
¼ �/þ

dPþ

dxþ
þ

�/þ

Da
Uþð0Þ

Kþ
ð56Þ

The zeroth and first order analytical solutions can be
expressed as:

Uþð0Þ ¼ k1�yþ þ k2 ð57Þ
Uþð1Þ ¼ k3�yþ þ k4 ð58Þ

where the constants of integration ki, i 2 {1, . . . , 4} in the
expressions for the velocity will be determined using the
outer solutions and the matching conditions.

3.2.3. Zeroth order solution
The inner solution of the problem is given by Eqs. (56)–

(58). In particular, these equations are valid for all �yþ 2 R.
Accounting for the matching conditions (36), (38) and (39)
applied to the velocity, it comes:

k1 ¼ 0; Thus Uþð0Þ ¼ k2 ð59Þ

k2 ¼
1

2Da
� Cð0Þ2 ¼ 1þ Cð0Þ1 ð60Þ

k3 ¼
ffiffiffiffiffiffi
/p

Da

r
Cð0Þ1 ¼ Cð0Þ2 ¼

dUþð0Þ

dyþ

�����
yþ¼0

ð61Þ

The system formed by Eqs. (60) and (61) is then solved:

Cð0Þ1 ¼
r2 � 2

2ð1þ r
ffiffiffiffiffiffi
/p

p
Þ

ð62Þ

Cð0Þ2 ¼ r
ffiffiffiffiffiffi
/p

q r2 � 2

2ð1þ r
ffiffiffiffiffiffi
/p

p
Þ

ð63Þ

where r ¼ 1=
ffiffiffiffiffiffi
Da
p

, following the nomenclature introduced
by Beavers and Joseph [1].

Thus, we obtain the following boundary conditions at

order 0:

huijy¼0þ ¼ huijy¼0� ð64Þ
dhui
dy

����
y¼0þ
¼ dhui

dy

����
y¼0�

ð65Þ

These relations mean that, at order 0, the volume average
velocity hui and the constraint built on the volume average
velocity and the viscosity of the fluid ldhui/dy are constant
across the interface. The second boundary condition (Eq.
(65)) is different from that used by Neale and Nader [11].
Indeed, Neale and Nader assume the continuity of the
shear stress built using the effective viscosity (‘‘effective’’
stress) whereas our development shows that it is the stress
built using the viscosity of the fluid which is continuous at
zeroth order across the interface. In fact this result is linked
to the form of Eq. (20). If the ratio l// was inside the
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divergence operator, we would obtain a jump condition for
the ‘‘effective’’ stress. It is not easy to conclude if one
should or not put this ratio inside the divergence operator.
Indeed, the closure expression given by Eq. (20) is obtained
for a homogeneous porous medium, for which both formu-
lations are equivalent since the porosity is constant. And
for highly heterogeneous porous media, for which the dif-
ference is important, it is not possible to close the problem
as discussed in Section 2.2. We made the choice to let the
ratio l// outside the divergence operator because, using
the up-scaling method, it appears first outside of the diver-
gence. In the literature, both approaches can be found.
Neale and Nader [11] keep this ratio 1// (or similarly leff)
outside the divergence operator, while Goyeau et al. [7] put
this ratio inside the divergence operator. In the study of
Ochoa-Tapia and Whitaker [13,14], the situation is even
more complex since the ratio l// is first kept outside the
divergence operator, before being introduced inside the
divergence operator in order to arrange the Brinkman
correction term into the form of a divergence to derive
the jump conditions for the effective stress. We emphasize
that the location of this ratio will remain a modeling choice
until the closure problem will be solved in the highly heter-
ogeneous region. However, once the choice is made to let
this ratio outside of the divergence operator, our develop-
ment shows that it is the stress built with the fluid viscosity
which is continuous across the interface at zeroth order and
not the stress built with the effective viscosity.

The zeroth order solution of the problem is given in the
outer regions by

hui ¼ U1 1þ r2 � 2

2ð1þ r
ffiffiffiffiffiffi
/p

p
Þ

exp

ffiffiffiffiffiffi
/p

Kp

s
y

 ! !
; y 6 0

ð66Þ

hui ¼ U1

0
@rðrþ 2

ffiffiffiffiffiffi
/p

p
Þ

2ð1þ r
ffiffiffiffiffiffi
/p

p
Þ
þ

ffiffiffiffiffiffi
/p

q r2 � 2

2ð1þ r
ffiffiffiffiffiffi
/p

p
Þ

yffiffiffiffiffiffi
Kp

p
 !

� 1

2

yffiffiffiffiffiffi
Kp

p
 !2

1
A;

0 6 y 6 h ð67Þ
This result is different from the one obtained by Neale and
Nader [11], though very similar. The solution in the free
fluid region (y > 0) is identical provided that their parame-
ter b ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
leff=l

p
is replaced everywhere by

ffiffiffiffiffiffi
/p

p
. However,

this identification does not work for the solution in the
porous medium region (y < 0) because their parameter b
should be replaced by 1=

ffiffiffiffiffiffi
/p

p
in the exponential function.

Furthermore, we note that only the second identificationffiffiffiffiffiffiffiffiffiffiffiffi
leff=l

p
¼ 1=

ffiffiffiffiffiffi
/p

p
is consistent with our model (see Eq.

(20)). This difference between the two results is a direct con-
sequence of the boundary condition (65) which is different
from their hypothesis to consider the continuity of the
effective shear stress at the interface and is itself a conse-
quence of our choice to keep the ratio l// outside the
divergence operator.
3.2.4. First order solution

Accounting for the matching condition (37) applied to
the velocity, the following result is obtained:

k4 ¼ Cð1Þ1 ¼ �Cð1Þ2 ð68Þ
This relation shows that, at order 1 in �, the volume average
velocity across the interface is still constant. To obtain
another relation between Cð1Þ1 and Cð1Þ2 , we have to solve
the inner problem at second order. Using Eq. (48), Eq.
(56) can be written as follows:

d

d�yþ
dUþð2Þ

d�yþ
þ �yþ �/�

dPþ

dxþ
� /�U�

DaK�

� �� �

¼ ð�/þ � /�Þ
dPþ

dxþ
þ

�/þUþð0Þ

DaKþ
� /�U�

DaK�

� �
ð69Þ

where w± are the constant asymptotic values of the corre-
sponding quantities as �yþ ! �1. Accounting for the
matching condition (40), it comes:

lim
�yþ!þ1

dUþð2Þ

d�yþ
¼ Cð1Þ2 �

�yþ

Da
ð70Þ

lim
�yþ!�1

dUþð2Þ

d�yþ
¼

ffiffiffiffiffiffi
/p

Da

r
Cð1Þ1 þ �yþ

/p

Da
Cð0Þ1 ð71Þ

Eq. (69) is first integrated from yi, the exact position of the
interface which is located somewhere in the heterogeneous
transition zone, to +1. Using the asymptotic values at
+1 and relation (70), one gets:

Cð1Þ2 �
dUþð2Þ

d�yþ
ðy iÞ ¼

�1

Da

Z þ1

yi

�/þ � /þ
	 


þ
Z þ1

yi

�/þUþð0Þ

DaKþ

� �
þ yi

Da
ð72Þ

Eq. (69) is then integrated from �1 to yi. Using the
asymptotic values at �1 and relation (71), one gets:

dUþð2Þ

d�yþ
ðy iÞ �

ffiffiffiffiffiffi
/p

Da

r
Cð1Þ1

¼ �1

Da

Z yi

�1

�/þ � /�
	 


þ
Z yi

�1

�/þUþð0Þ

DaKþ
�

/pUþð0Þ

Da

 !

� yi

/p

Da
þ yi

/pUþð0Þ

Da
ð73Þ

By adding Eqs. (72) and (73), and using the fact that Uþð0Þ

is constant in the transition zone, we obtain the following
result:

Cð1Þ2 �
ffiffiffiffiffiffi
/p

Da

r
Cð1Þ1 ¼

Uþð0Þ

Da

�/þ

Kþ

� �ex

� 1

Da
�/þ
	 
ex ð74Þ

where the excess quantity is defined by

wex ¼ y iðw� � wþÞ þ
Z yi

�1
ðw� w�Þ þ

Z þ1

yi

ðw� wþÞ ð75Þ

for any physical variable w. Eq. (74) shows that, at order 1

in �, the constraint is not continuous.
In Fig. 2 we have plotted w, w+ and w�. The correspond-

ing excess quantity wex is related to the shaded areas. Using



;

Fig. 2. Determination of an excess function.
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this definition for the excess quantity, one can verify that its
value is independent of the exact location of the interface yi.
This is important since the exact location of the interface
cannot be known. Indeed, as already mentioned, the inter-
face is only an ideal representation of a region with contin-
uous but rapidly varying properties. For the model
proposed by Beavers and Joseph, Saffman [20], Sahraoui
and Kaviany [21] and Larson and Higdon [9] underlined
the dependence of a on the exact location of the interface,
whereas this precise location could not be accurately deter-
mined. Our development shows that such dependence does
not exist, even though there does exist a dependence on the
structure of the transition zone through the excess quanti-
ties as shown in the following section.

Then the system formed by Eqs. (68) and (74) is solved
to determine Cð1Þ1 and Cð1Þ2 :

Cð1Þ2 ¼
r2

ð1þ r
ffiffiffiffiffiffi
/p

p
Þ

Uþð0Þ
�/þ

Kþ

� �ex

� ð�/þÞex

� �
¼ �Cð1Þ1

ð76Þ

The first order solution of the problem is given in the outer
regions by

hui¼U1

0
@ ffiffiffiffiffiffi

/p

q r2�2

2ð1þr
ffiffiffiffiffiffi
/p

p
Þ
þd

h
r

1þr
ffiffiffiffiffiffi
/p

p
"

�
rðrþ2

ffiffiffiffiffiffi
/p

p
Þ

2ð1þr
ffiffiffiffiffiffi
/p

p
Þ

�/þ

Kþ

� �ex

� �/þ
	 
ex

 !#
yffiffiffiffiffiffi
Kp

p �r

 !

�1

2

yffiffiffiffiffiffi
Kp

p
 !2

þr2

2

1
A; 06 y6 h ð77Þ

hui¼U1 1þ r2�2

2ð1þr
ffiffiffiffiffiffi
/p

p
Þ
þd

h
r2

ð1þr
ffiffiffiffiffiffi
/p

p
Þ

  

� �
rðrþ2

ffiffiffiffiffiffi
/p

p
Þ

2ð1þr
ffiffiffiffiffiffi
/p

p
Þ

�/þ

Kþ

� �ex

þ �/þ
	 
ex

 !!
exp

ffiffiffiffiffiffi
/p

Kp

s
y

 !!

y6 0 ð78Þ
This solution verifies the following boundary conditions:

huijy¼0þ ¼ huijy¼0� ð79Þ

dhui
dy

����
y¼0þ
�dhui

dy

����
y¼0�
¼U1

d
Kp

rðrþ2
ffiffiffiffiffiffi
/p

p
Þ

2ð1þr
ffiffiffiffiffiffi
/p

p
Þ

�/þ

Kþ

� �ex

� �/þ
	 
ex

 !

ð80Þ

We note that the volume average velocity is still continuous
at first order in �, whereas the stress exhibits a discontinuity
at first order in �. Since the velocity is continuous at the
interface, this result can be expressed using the slip velocity
defined here as uB = huijy=0:

huijy¼0 ¼ U1
rðrþ 2

ffiffiffiffiffiffi
/p

p
Þ

2ð1þ r
ffiffiffiffiffiffi
/p

p
Þ

ð81Þ

and the pressure gradient:

� dhpif
dx
¼ U1l

Kp

ð82Þ

Then, Eq. (80) reduces to:

dhui
dy

����
y¼0þ
� dhui

dy

����
y¼0�
¼ d

Kp

�/þ

Kþ

� �ex

huijy¼0 þ
d
l

�/þ
	 
ex dhpif

dx

ð83Þ
This expression is relevant to understand the phenomena to
which the different excess quantities are related. However,
in order to compare this result with the one proposed by
Ochoa-Tapia and Whitaker [13], the jump is expressed
using only the slip velocity huijy=0. At first order, it comes:

dhui
dy

����
y¼0þ
� dhui

dy

����
y¼0�

¼ d
Kp

�/þ

Kþ

� �ex

� �/þ
	 
ex 2ð1þ r

ffiffiffiffiffiffi
/p

p
Þ

rðrþ 2
ffiffiffiffiffiffi
/p

p
Þ

 !
huijy¼0 ð84Þ

This result is similar to the one proposed by Ochoa-Tapia
and Whitaker [13], and comparing with their result (4), we
have:

bp ¼ �
dffiffiffiffiffiffi
Kp

p �/þ

Kþ

� �ex

� ð�/þÞex 2ð1þ r
ffiffiffiffiffiffi
/p

p
Þ

rðrþ 2
ffiffiffiffiffiffi
/p

p
Þ

 !
ð85Þ

This result provides an explicit dependence of bp with the
structure of the transition zone. One has to note that the
jump condition (Eq. (83)) is built on the ‘fluid’ stress,
whereas the jump condition proposed by Ochoa-Tapia
and Whitaker [13] was built on the ‘effective’ stress. It ex-
plains why the porosity does not appear on the left hand
side of Eq. (83) unlike in the solution they proposed. It is
also worth noting that the dependence of bp on the param-
eter d=

ffiffiffiffiffiffi
Kp

p
predicted by Ochoa-Tapia and Whitaker [13]

naturally appears in our development. We also note the
bp dependence on the other length scale ratio r.

For the sake of simplicity, we introduce the following
notations:

c ¼
�/þ

Kþ

� �ex

; k ¼ ð�/þÞex ð86Þ



Table 1
Geometrical characteristics of the porous specimens used in the Beavers
and Joseph experiments

Porous
specimen

Permeability Kp Pore size Porosity /p d=
ffiffiffiffiffiffi
Kp

p

Foametal 7.1 · 10�9 – 0.78 –
Foametal A 9.7 · 10�9 4.06 · 10�4 0.78 4.12
Foametal B 3.94 · 10�8 8.64 · 10�4 0.78 4.35
Foametal C 8.2 · 10�8 1.14 · 10�3 0.79 3.98
Aloxite 1 6.45 · 10�10 3.30 · 10�4 0.58 12.99
Aloxite 2 1.6 · 10�9 6.86 · 10�4 0.52 17.15
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3.2.5. Determination of the excess quantities

The last unknowns of the problem are the values of the
excess quantities c and k (see Eq. (86)). Because of its nat-
ure, an excess quantity can be either positive or negative. If
the physical variables / and //K were symmetric in the
transition zone, the corresponding excess quantities would
be null. Thus, the excess quantities are related to a loss of
symmetry. They quantify the heterogeneity of the porous
medium structure in the transition zone. In order to under-
stand the phenomena to which they are associated, we go
back to Eqs. (56) and (83). Eq. (56) gives the momentum
balance inside the transition zone, whereas Eq. (83) charac-
terizes the consequences of this momentum balance for the
outer solution. k can be related to the porosity in front of
the pressure gradient, which is constant, and c can be asso-
ciated to the ratio //K in front of the velocity term. We
recall that the velocity Uþð0Þ is constant, since the velocity
is constant at zeroth order in the inner region. We deduce
that an asymmetric porosity in the transition zone leads to
an asymmetric effective viscosity leff = l// which influ-
ences the velocity gradient in the transition zone, the con-
sequence being a velocity gradient jump for the outer
solution. Thus, k allows to quantify the asymmetric effec-
tive viscosity of the transition region and we note that it
is indeed the ratio k/l which appears in Eq. (83). Likewise,
the asymmetry of the ratio //K results in an asymmetry in
the drag, which also influences the velocity gradient in the
transition zone, the consequence being a velocity gradient
jump for the outer solution. Thus, c allows to quantify
the asymmetric drag of the transition region. The difference
between the two phenomena allows to understand why the
r dependence of b only appears in front of k. c being asso-
ciated to an asymmetry of the drag at constant velocity, it
cannot keep the memory of the height of the channel
(r ¼ h=

ffiffiffiffiffiffi
Kp

p
), whereas k can, since it is related to the pres-

sure term. Yet, these two phenomena are intimately linked,
and we cannot think of an experiment that would allow us
to determine these two quantities independently.

To obtain an idea of the order of magnitude of the
excess quantities c and k, we compute their values for dif-
ferent variations of / and K in the transition zone. First,
we assume that the variations of the porosity and of the
inverse of the permeability are linear. We obtain:

k ¼ 0; c ¼
1� /p

6
ð87Þ

If we assume a variation of these quantities following a
hyperbolic tangent, we obtain:

k ¼ 0; c ¼
1� /p

2
ð88Þ

To obtain a non-zero value for k, one has to consider a loss
of symmetry for the porosity. This is not the case for c,
since its value can be non-zero for symmetric variations
of / and 1/K.

If we assume that the porosity is bounded in the hetero-
geneous region by its two asymptotic values in the homoge-
neous region (no material storage in the transition zone), it
follows that the corresponding excess quantity is bounded
by

�
1� /p

2
6 k 6

1� /p

2
ð89Þ

If we make the same assumption for the inverse of the per-
meability, it follows that:

�
/p

2
6 c 6 1�

/p

2
ð90Þ

We cannot provide better predictions for the values of the
excess quantities, since we do not know the functional
dependence of the porosity and permeability within the
transition zone. However, the above relations show that
they should be of the order of one, either negative or posi-
tive, if we assume no material storage in the transition
zone.

4. Comparisons with experimental data

Beavers and Joseph [1] carried out comparisons between
theory and experiment in terms of the fractional increase in
mass flow rate U due to the presence of the porous wall:

U ¼
Qp � Qi

Qi

ð91Þ

where Qp is the mass flow rate within the free fluid region
for a given porous medium, while Qi is the mass flow rate
for an impermeable wall. The comparison with the experi-
mental results is performed using the characteristics of the
porous materials used by Beavers and Joseph [1] in their
experiments as reported by Goyeau et al. [7] and recalled
in Table 1. According to theoretical studies [9,10,21], d is
of the order of the average pore diameter of the porous
medium dp. We use this assumption to compute the param-
eter d=

ffiffiffiffiffiffi
Kp

p
. The obtained values are presented on Table 1.

Using only the zeroth order solution for the velocity, the
following result is obtained:

Uð0Þ ¼
3ðrþ 2

ffiffiffiffiffiffi
/p

p
Þ

rð1þ r
ffiffiffiffiffiffi
/p

p
Þ

ð92Þ

This expression is identical to the one derived by Beavers
and Joseph [1] after identifying their parameter a withffiffiffiffiffiffi

/p

p
. However, this zeroth order result is not sufficient.
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Indeed, whereas the four foametal materials have the same
porosity (see Table 1), Beavers and Joseph use four differ-
ent values of a to fit their experimental results. Using the
first order solution for the velocity, one obtains:

Uð1Þ ¼ Uð0Þ þ dffiffiffiffiffiffi
Kp

p 1

r
ffiffiffiffiffiffi
/p

p
þ 1

6

r
k� rUð0Þc

� �
ð93Þ

In Figs. 3–6, we compare the analytical solutions given by
Eqs. (92) and (93) with the experimental data of Beavers
and Joseph [1].

For the first foametal material (Fig. 3), good agreement
between theory and experiment is obtained at zeroth order
U(0). For the three other foametal materials (Fig. 4), the
zeroth order solution is not sufficiently accurate, even
though the order of magnitude is correct. Better agreement
is obtained when considering the first order solution U(1),
for values of c ranging from �0.05 to 0.16, and considering
k = 0. This result is consistent with the fact that c should be
in the range [�0.39, 0.61] (Eq. (90)) and that its sign may be
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Fig. 3. Comparison between theories and experiments for the first
foametal.

0 4 8 12 16 20 24
  σ 

0

0.2

0.4

0.6

0.8

1

1.2

Φ

BJ Experiments: Foametal A 
BJ Experiments: Foametal B
BJ Experiments: Foametal C

Φ (0)

Φ(1)
: γ = -0.05

Φ(1)
: γ = 0.06

Φ(1)
: γ = 0.16

Fractional excess flow rate  Φ  versus  σ  for Foametal

Fig. 4. Comparison between theories and experiments for foametals A, B
and C.

0 20 40 60 80 100 120
  σ 

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Φ

BJ Experiments: Aloxite 2
OT-W analytical results β = 1.47

Φ(0)

Φ(1)
: γ = -0.25

Φ(1)
: γ = -0.05 - λ=5

Fractional excess flow rate  Φ  versus  σ  for Aloxite 2

Fig. 6. Comparison between theories and experiments for Aloxite 2.
either positive or negative due to the nature of an excess
quantity, as discussed in the previous section. We indicate
that we always first tried to fit the experimental data with
k = 0, since a non-zero value of k means a loss of symme-
try, which is not the case for c as pointed out in the previ-
ous section.

For the Aloxite experiments the zeroth order solution
does not fit at all the experiments (Figs. 5 and 6). However,
good agreement is obtained when considering the first
order solution U(1), for values of c ranging from �0.18 to
�0.3, and considering k = 0. These values of c are of the
same order as the one used to fit the foametal experiments.
The significant difference comes from the value of the ratio
d=

ffiffiffiffiffiffi
Kp

p
which is greater for the aloxite blocks. These first

order results, obtained with k = 0, are very similar to the
ones proposed by Ochoa-Tapia and Whitaker [14], as can
be seen in Figs. 5 and 6.

One can note that for the aloxite experiment, the slope
of the fractional increase in mass flow rate U versus r is still
not accurately predicted by these two models. A better
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result is obtained by taking non-zero values for k, which
means that we consider that the porosity is no longer sym-
metric in the transition zone. However, the values of k that
best fit the experimental values (2 and 5) are out of the
expected range predicted by Eq. (89). This could be
explained if we suppose that the thickness of the heteroge-
neous transition zone has been underestimated by a factor
8 for the aloxite 1 and by a factor 20 for the aloxite 2. This
would imply significant heterogeneous regions at the inter-
face of the porous material. It could be the consequence of
the structure of the aloxite material which has probably a
very irregular pore distribution close to the interface [1].
The other possible explanation is related to the validity
of the assumption that no material storage occurs in the
transition zone (Eq. (89)). It might be possible that, during
the machining, the material suffered at its surface, leading
to a decrease of the material porosity beneath the interface.
This would imply large values of k. The two combined
effects (significant size of the heterogeneous region and
material storage) could explain the very large value of k
obtained for the aloxite 2. To conclude on this point, more
informations about the surface microstructure of the mate-
rials used for the experiments are necessary.

In order to make a quantitative comparison with the
values of b estimated by Ochoa-Tapia and Whitaker [14],
the values for bp (Eq. (85)), obtained once k and c have
been adjusted to fit the Beavers and Joseph experiment
[1], are shown in Table 2. When k is non-zero (Aloxite
experiments), bp is no longer a constant and depends on
r. Thus, the extremum values of bp obtained for r = 20
and r = 100 are presented. As can be seen on this table,
the values obtained for bp are different from the one pro-
posed by Ochoa-Tapia and Whitaker [14] to fit the Beavers
and Joseph experiment [1]. It is not surprising, since, as
mentioned before, the stress jump conditions are not built
on the same stress.

These results show that the increase in mass flow rate U
is very sensitive to the value of the excess quantities, which
is unfortunately unknown and related to the surface of the
porous medium. We recall that Beavers et al. [2] found that
the value of the slip coefficient a for a certain material
doubled after its surface was remachined. Sahraoui and
Table 2
Comparison of the stress jump parameters bp and b

Porous specimen c k bp b (Ochoa-Tapia
and Whitaker)

Foametal 0 0 0 0.6
Foametal A �0.05 0 0.206 0.7
Foametal B 0.06 0 �0.261 0
Foametal C 0.16 0 �0.637 �1
Aloxite 1

(first result)
�0.3 0 3.89 1.47

Aloxite 1
(second result)

�0.25 2 [5.21–3.64] 1.47

Aloxite 2
(first result)

�0.25 0 4.28 1.47

Aloxite 2 (second result) �0.05 5 [7.02–2.10] 1.47
Kaviany [21] also established that the surface structure
(structural non-uniformities at the surface) influences sig-
nificantly the slip coefficient a. They concluded that a was
mainly a surface property. This strong dependence is high-
lighted by our developments. Furthermore, our analysis
directly relates these excess quantities to the variations of
the porosity and of the permeability in the transition zone.
Therefore, if, by any mean (experimentally or theoreti-
cally), we could have access to this information, we could
determine their values.

Finally, we emphasize that thanks to this analysis,
unlike the studies of Ochoa-Tapia and Whitaker [14] and
Goyeau et al. [7], it is no longer required to solve Eq.
(22) in the whole channel to obtain the increase in mass
flow rate for given variations of porosity and permeability
in the heterogeneous transition zone, and to start again the
simulation for different values of h. One just needs to com-
pute the excess quantities corresponding to the chosen vari-
ations of porosity and permeability.

5. Discussion

The first subject of discussion involves the ratio l// =
leff. In most studies, this ratio is kept outside of the diver-
gence operator of the Darcy–Brinkman equation (see Eq.
(20)), whereas the continuity of the ‘effective’ stress is con-
sidered. Our analysis shows that this is inconsistent, even
though it is not easy to conclude where one should put this
ratio. Indeed, as already pointed out, the closure of the
averaging problem is always obtained for homogeneous
regions for which both formulations are equivalent since
the porosity is constant. Furthermore, these two formula-
tions lead to very similar results in terms of the increase
in mass flow rate. And in both cases, one needs to adjust
an a priori unknown parameter to fit the experimental
data. Thus, it is not possible with these experiments to con-
clude. The study of highly heterogeneous porous medium
might give an answer to this question.

Another discussion concerns the second Brinkman cor-

rection. Since this term involves the gradient of the poros-
ity, it is still not easy to conclude if one needs to introduce
this term, or if this term is already taken into account by
considering variable porosity and permeability in the heter-
ogeneous transition zone. However, we can say that this
term is not essential to recover the jump conditions. And
it might even be better not to introduce it, since Goyeau
et al. [7] were able to recover the jump conditions without
the second Brinkman correction, whereas Ochoa-Tapia and
Whitaker [14] could not.

6. Conclusion

In this paper, we have studied the single phase Poiseuille
flow over a permeable block and we have derived the
boundary conditions that must be applied at the interface
between the porous medium and the free fluid. Based on
the observation that a sharp interface is only an idealiza-
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tion of a region where the properties of the medium
encounter strong but nevertheless continuous variations,
a heterogeneous transition zone is introduced between the
two homogeneous regions (i.e. porous medium and free
fluid). It is shown that the same volume averaged transport
equation can be used to describe the two homogeneous
regions, and it is assumed that this equation still holds in
the heterogeneous transition zone by considering variable
porosity and permeability. Then, the problem is solved
using the method of matched asymptotic expansions, with-
out specifying a priori the functional dependence of the
porosity and permeability in the transition zone. The reso-
lution of this problem proves that, if the validity of the sin-
gle volume averaged transport equation is assumed in the
whole domain, then the velocity is continuous across the
interface (79), whereas the stress is discontinuous (83). It
also proves that, it is a stress jump condition built using
the fluid viscosity that has to be considered at the interface,
whereas previous studies (e.g. [11,13]) suggested to use a
stress jump condition built using the effective viscosity of
the porous medium. Furthermore, in previous studies, the
stress jump condition was only related to the slip velocity
through a stress jump parameter [13]. The analytical devel-
opment shows that the stress jump condition is also related
to the pressure gradient, through a second jump parameter
(see Eq. (83)). This study provides an explicit dependence
of the stress jump coefficient on the variations of the por-
osity and permeability in the transition zone, expressed
through two excess quantities which are actually surface
properties. Thus, the stress jump coefficient is directly
linked to the surface properties of the porous medium.
An estimation of these excess quantities has been proposed.
Good agreement is obtained between theory and the Bea-
vers and Joseph [1] experiment by adjusting the values of
these two excess quantities. In particular, we were able to
correctly predict the slope of the fractional increase in mass
flow rate U versus the non-dimensional height of the free
fluid region r for the aloxite experiments, a result that
other models cannot recover. Even though we had to adjust
the values of the excess quantities to obtain good agree-
ment with the available data, our analysis directly relates
these excess quantities to the variations of the porosity
and permeability in the transition zone (see Eq. (75)). Thus,
further work should focus on the means (either experimen-
tal or theoretical) of evaluating a priori the values of these
excess quantities for the surface of a given material. If such
informations were available, we would be able to predict
the stress jump coefficient without resorting to experiments.
Furthermore, this study suggests a methodology to derive
boundary conditions between a free fluid and a porous
medium and could be used to derive boundary conditions
for other transport phenomena: heat, species,. . .
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